Abstract:
There are two theories about how allocation of metabolic products occurs. The allometric biomass partitioning theory (APT) suggests that all plants follow common allometric scaling rules. The optimal partitioning theory (OPT) predicts that plants allocate more biomass to the organ capturing the most limiting resource.
Whole-plant harvests of mature and juvenile tropical deciduous trees, evergreen trees, and lianas and model simulations were used to address the following knowledge gaps: (1) Do mature lianas comply with the APT scaling laws or do they invest less biomass in stems compared to trees? (2) Do juveniles follow the same allocation patterns as mature individuals? (3) Is either leaf phenology or life form a predictor of rooting depth?
It was found that: (1) mature lianas followed the same allometric scaling laws as trees; (2) juveniles and mature individuals do not follow the same allocation patterns; and (3) mature lianas had shallowest coarse roots and evergreen trees had the deepest.
It was demonstrated that: (1) mature lianas invested proportionally similar biomass to stems as trees and not less, as expected; (2) lianas were not deeper-rooted than trees as had been previously proposed; and (3) evergreen trees had the deepest roots, which is necessary to maintain canopy during simulated dry seasons.