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Chinese is typically characterized by 
the co-existence of visuospatial and 
phonological disorders in a dyslexic 
child. This pattern of behavioral and 
pathophysiological profiles is different 
from that in English dyslexia, which 
is generally associated with a core 
phonological deficit in the absence of 
abnormal visual processing [7]. 
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which represented nearly the full 
diet of spiders in Mexico (91% of 
items consumed) but relatively 
less in Costa Rica (60%; c2 = 14.2, 
df = 3, P < 0.05; Figure 1B). Spiders 
occasionally supplemented Beltian 
bodies with extrafloral nectar, 
another resource central to the 
ant–acacia mutualism [2]. They also 
preyed on acacia-ant larvae, small 
nectar-feeding flies, and (rarely) 
smaller conspecifics.

We observed focal B. kiplingi 
circumventing the well-known 
defenses of the acacia’s 
Pseudomyrmex ant-inhabitants, which 
keep the plant free of most herbivores 
and encroaching vegetation [2]. These 
spiders occur almost exclusively on 
ant-occupied acacias, where they 
breed year-round and generally build 
their nests at the distal tips of older 
leaves (86%; N = 110) that have low 
rates of ant patrol (see Supplemental 
Data available on-line). Foraging  
B. kiplingi actively avoid ant-guards 
and exhibit situation-specific 
strategies (for example, changing 
targets if approached by ants) 
when harvesting Beltian bodies and 
when taking nectar or ant larvae 
(Supplemental Movies S1–S5).

Stable-isotope analyses confirmed 
B. kiplingi herbivory (Figure 1C; 
see also Supplemental Data). Our 
results are consistent with other 
food-web studies: the tissues of 
herbivores tend to have lower 15N:14N 
ratios (expressed as d15N) relative 
to carnivores, whereas consumers 
tend to match 13C:12C ratios (d13C) 
of their food [6]. Mexican B. kiplingi 
specimens had d15N profiles averaging 
4.8% lower than those of other 
jumping spiders from surrounding 
vegetation, but only 2.1% and 2.9% 
higher than ant workers and Beltian 
bodies, respectively. B. kiplingi 
spiders and ant workers at this site 
had d13C signatures virtually identical 
to those of Beltian bodies, whereas 
other spiders exhibited d13C values 
that did not match those of Beltian 
bodies. 

Using dietary mixing models (see 
Supplemental Data), we estimate that 
B. kiplingi in Mexico (N = 50) derive 
>95% of assimilated C and N from 
ant-acacias, including 89 ± 13.2% 
(mean ± SE) directly from plant tissue 
and 8 ± 7.9% indirectly from acacia-
ant larvae. Individuals of all age-sex 
classes had similar diets, suggesting 
that spiders in this population are 
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Spiders are thought to be strict 
predators [1]. We describe a novel 
exception: Bagheera kiplingi, a 
Neotropical jumping spider (Salticidae) 
that exploits a well-studied  
ant–plant mutualism, is predominantly 
herbivorous. From behavioral field 
observations and stable-isotope 
analyses, we show that the main diet 
of this host-specific spider comprises 
specialized leaf tips (Beltian food 
bodies; Figure 1A) from Vachellia spp. 
ant-acacias (formerly Acacia spp.), 
structures traded for protection in 
the plant’s coevolved mutualism with 
Pseudomyrmex spp. ants that inhabit 
its hollow thorns [2]. This is the first 
report of a spider that feeds primarily 
and deliberately on plants.

Jumping spiders use advanced 
color-vision, agility, and cognitive 
skills to prey upon invertebrates 
[3]. The Salticidae is the largest 
family of spiders (>5,000 species), 
and members of this diverse group 
employ a broad range of foraging 
strategies. However, departures from 
carnivory in salticids — or in any of 
the 40,000 described spiders — are 
rare [1]: several cursorial spiders 
imbibe nectar as an occasional 
supplement to animal prey [4], 
and some juvenile orb-weavers 
incidentally ingest pollen when 
recycling their webs [5].

We discovered herbivory in 
B. kiplingi during field studies in 
southeastern Mexico (Quintana Roo, 
involving V. collinsii acacias inhabited 
by P. peperi ants) and northwestern 
Costa Rica (Guanacaste Province, 
involving V. collinsii and V. cornigera 
inhabited by P. spinicola, P. flavicornis, 
or P. nigrocincta). Between 2001 and 
2008, we systematically observed 
individual B. kiplingi in these two 
regions to study foraging behavior. 
We supported direct observations of 
spiders in Mexico with high-definition 
videography.

Individuals at both sites fed 
predominantly on Beltian bodies, 
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near-total vegetarians throughout 
their lives. Analyses of Costa Rican 
specimens (N = 11) indicated a 
larger contribution of other animal 
prey to the diet of spiders there 
(Supplemental Figure S1), consistent 
with feeding patterns observed in the 
field (Figure 1B).

A widespread and intimate 
distributional association 
exists between B. kiplingi and 
myrmecophytic Vachellia spp. The 
spider’s known geographic range 
coincides with that of ant–acacia 
systems throughout Mesoamerica 
(Figure S2). Hundreds of individual 
B. kiplingi may inhabit a single 
ant-acacia, yet during a seven-year 
inventory of all salticids at our Costa 
Rican site (N = 1174 individuals from 
48 species), we observed only two 
B. kiplingi individuals on plants other 
than Vachellia spp. In both Mexico 
and Costa Rica, we also found nests 
of B. kiplingi (N > 200) only on ant-
acacias or adjacent foliage. Reports 
of host-plant specificity in a spider 
are rare [7], and no spider has been 
shown previously to exploit the 
specific resources exchanged in any 
mutualism.

Consumption of Beltian bodies by 
B. kiplingi may derive from foraging 
on other static food sources, such 
as acacia-ant larvae or eggs of other 
insects. However, while enriched 
in sugar and protein, these low-fat 
food bodies are 80% structural fiber 
[8] and are thus poor surrogates for 
animal prey. Given that no other spider 
is known to feed on vegetation, the 
digestive physiology of B. kiplingi 
may be specialized to process such 
a fibrous, nitrogen-poor material [9]. 
Year-round availability of ant-plant 
food [2], combined with indirect 
defensive benefits possibly conferred 
by the acacia-ants [10], may also help 
explain how the spider’s carnivorous 
ancestor transitioned to herbivory.

The host-specific natural history 
of B. kiplingi demonstrates that 
commodities modified for trade in 
a pairwise mutualism can, in turn, 
shape the ecology and evolutionary 
trajectory of other organisms that 
intercept these resources. Here, one 
species within an ancient lineage 
of carnivorous arthropods — the 
spiders — has achieved herbivory by 
exploiting plant goods exchanged for 
animal services. While the advanced 

sensory-cognitive functions of 
salticids [3] may have pre-adapted 
B. kiplingi for harvesting Beltian 
bodies, this spider’s unprecedented 
trophic shift was contingent upon 
the seemingly unrelated coevolution 
between an ant and a plant. 
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Figure 1. Evidence of herbivory in the jumping spider Bagheera kiplingi.
(A) Adult female consumes a Beltian body harvested from the tip of an ant-acacia leaflet. 
(Photo: M. Milton.) (B) B. kiplingi diet estimated from field observations. Beltian bodies 
contributed more to the spider’s diet than did other food sources, especially in Mexico 
(sample sizes refer to numbers of food items observed). (C) Stable-isotope profiles of 
Mexican B. kiplingi in relation to other study-system components. The scatterplot shows 
results for each individual (sample sizes in parentheses), highlighting the difference be-
tween B. kiplingi and other spiders: Bagheera’s low d15N profile (a proxy for trophic level) 
resembles that of an herbivore, whereas overlap with the d13C profiles of Beltian bodies 
reflects heavy contribution to the spider’s assimilated diet.
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