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Stand age and soils as drivers of plant functional traits and
aboveground biomass in secondary tropical dry forest
Justin M. Becknell and Jennifer S. Powers

Abstract: The distribution of tropical forest biomass across the landscape is poorly understood, particularly in increasingly
common secondary tropical forests. We studied the landscape-scale distribution of edaphic properties, plant community char-
acteristics, and aboveground biomass (AGB) in secondary tropical dry forests in northwest Costa Rica. We used structural
equation modeling to examine conceptual models of relationships among these factors, with data from 84 0.1 ha plots. Stand age
and soils explained 33%–60% of the variation in community-weighted mean values of foliar traits including specific leaf area,
foliar nitrogen, phosphorus, and !13C. Aboveground biomass ranged from 1.7 to 409 Mg·ha−1 among plots between 5
and >100 years old. Stand age alone explained 46% of the variation in AGB among plots, while a model including age, soil pH,
traits, and forest type explained 58%. Stand age was the most important variable explaining the distribution of AGB and
community characteristics in secondary forests. We speculate that plot size, landscape heterogeneity, disturbance history, and
stand dynamics contribute to the unexplained variation in AGB across the landscape.

Key words: aboveground biomass, succession, plant functional traits, structural equation modeling, tropical dry forest, secondary
forest.

Résumé : La répartition de la biomasse de la forêt tropicale dans le paysage est mal connue, particulièrement dans les forêts
tropicales secondaires de plus en plus courantes. Nous avons étudié la répartition à l’échelle du paysage des propriétés
édaphiques, des caractéristiques des communautés végétales et de la biomasse aérienne (BA) dans les forêts tropicales secon-
daires sèches du nord-ouest du Costa Rica. Nous avons utilisé la modélisation par équation structurelle pour examiner des
modèles conceptuels des relations entre ces facteurs avec des données provenant de 84 placettes de 0,1 ha. L’âge du peuplement
et les sols expliquaient 33%–60% de la variation de la valeur moyenne des traits foliaires pondérée par les communautés incluant
la surface foliaire spécifique, la teneur en azote et en phosphore des feuilles et !13C. La BA variait de 1,7 à 409 Mg·ha−1 parmi les
placettes où l’âge du peuplement se situait entre 5 et >100 ans. L’âge du peuplement seul expliquait 46% de la variation de la BA
dans les placettes, tandis qu’un modèle qui incluait l’âge, les caractéristiques et le pH du sol ainsi que le type forestier expliquait
58%. L’âge du peuplement était la plus importante variable pour expliquer la répartition de la BA et les caractéristiques des
communautés dans les forêts secondaires. Nous croyons que la dimension de la placette, l’hétérogénéité du paysage, les
perturbations passées et la dynamique du peuplement contribuent à la partie inexpliquée de la variation de la BA dans le
paysage. [Traduit par la Rédaction]

Mots-clés : biomasse aérienne, succession, traits fonctionnels des plantes, modélisation par équation structurelle, forêt tropicale
sèche, forêt secondaire.

Introduction
Tropical forests store more carbon than boreal or temperate

forests and are central to our understanding of both the global
carbon cycle and the climate system (Bonan 2008). Despite their
importance, questions remain about the amount of biomass in
tropical forests, the distribution of biomass across the landscape
(Mascaro et al. 2011), and the rate of biomass accumulation during
secondary succession (Chazdon et al. 2007). As secondary forests
(defined here as forests regenerating following anthropogenic dis-
turbance) now comprise 57% of the world’s forests (FAO 2010), it is
critical to understand the patterns of carbon storage in regener-
ating tropical forests and how environmental factors, disturbance
history, and forest community characteristics affect these pro-
cesses (Fig. 1).

Carbon in biomass is generally expected to increase logistically
as forests recover from disturbance (Chapin et al. 2011), but the

maximum level of biomass reached and the time it takes to reach
it can vary across the landscape (Turner 2010). A number of factors
may account for this variability, including environmental vari-
ables like soil properties (Clark and Clark 2000) or plant commu-
nity characteristics like tree species diversity (Balvanera and
Aguirre 2006) and the functional traits of the tree species present
(Baker et al. 2009; Fig. 1). Forest biomass has been shown to vary
with tree species diversity (Ruiz-Jaen and Potvin 2010), and tree
growth rates have been linked to plant functional traits (Poorter
et al. 2008). The effects of environmental variation and distur-
bance history on forest biomass may be direct or indirect (i.e.,
mediated by community composition and trait distributions). For
example, soil properties may directly affect tree growth and pro-
ductivity (Baker et al. 2009). Alternatively, soils may affect which
species can establish in a location and consequently which func-
tional traits are present (Gourlet-Fleury et al. 2011). Specifically,
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soil micro- and macro-nutrients have been found to have strong
associations with neotropical tree species distributions (John et al.
2007). Because trait differences may confer different levels of car-
bon storage (e.g., via differences in wood density), this effect on
species composition could lead to an indirect effect of soils on
carbon stocks. Similarly, plant communities and their traits
are thought to change over the course of succession, as shade-
intolerant species with fast growth rates and high resources
acquisition rates are replaced by shade-tolerant species with con-
servative trait syndromes (Bazzaz 1979). Thus, stand age may af-
fect biomass directly as older stands typically contain more larger,
older trees, or indirectly as a function of directional change in
forest communities and trait distributions (Campetella et al. 2011).

Last, the contribution of species and functional diversity to eco-
system processes like productivity and biomass storage merits
discussion as it has been much debated (Tilman 1997; Grime 1998).
Understanding which component of diversity, the number of spe-
cies, or the relative abundance of the traits of those species, is of
interest in applying our understanding of processes to ecosystem
models or management practices (Mokany et al. 2008). Diversity is
thought to affect ecosystem processes if diverse plant communi-
ties have more functional roles occupied and make more efficient
use of available resources, i.e., niche complementarity (Tilman
1997). Another approach posits that the effects of a species, or
rather the traits of a species, correspond to its proportional abun-
dance, the so-called “mass-ratio” theory. In this perspective, the
effects on ecosystem processes of many rare but functionally di-
verse species are relatively small compared to the effects of the
dominant species and their traits (Grime 1998). While not mutu-
ally exclusive, these two ways of representing diversity suggest
alternative pathways through which community variables affect
ecosystem processes. Assessing the relative abilities of diversity
measures versus traits to explain ecosystem processes is impor-
tant to our theoretical understanding and to efforts to model or
manage forest ecosystems.

Here we examine the relationships among soil variables, plant
functional traits, diversity, stand age and biomass, to understand
how aspects of the environment and succession affect plant com-

munity characteristics and how all of these factors affect forest
biomass, explicitly testing the conceptual model in Fig. 1. A num-
ber of caveats accompany our conceptual model. First, we ac-
knowledge that other variables such as seed sources, symbionts,
and microclimate also affect regeneration following abandon-
ment from grazing (Holl 1999), but we focused on forest age and
soil characteristics as drivers of plant traits and carbon stocks, as
previous work has shown these to be strong determinants of for-
est community composition (Powers et al. 2009). Second, there are
possible feedbacks between changes in biomass and species com-
position that occur during succession and soil properties, which
would imply an arrow from “biomass stocks” to “environment” in
our conceptual model (Fig. 1). However, in this study we were
more interested in the effects of soil heterogeneity on community
characteristics and biomass rather than the converse, so we mea-
sured soil variables that we expected to be controlled by parent
material or other soil forming factors rather than plant commu-
nities. In addition to these caveats, we acknowledge the limita-
tions of our empirical approach such as our inability to rigorously
document the duration and intensity of prior land-use history and
management activities, the potential effects of landscape context
and matrix effects on recruitment, and other variables such as
site-specific community dynamics that are not well captured in
chronosequences.

Our goals were to document how aboveground biomass (AGB),
functional traits, and diversity change across succession and soils,
and quantify the direct and indirect relationships among stand
age, soils, and functional traits as they affect AGB in regenerating
tropical dry forests. The traits we focused on included foliar nu-
trients, specific leaf area, wood density, and the stable isotope of
foliar carbon as a measure of water use efficiency. These traits
reflect physiological characteristics that are likely to influence
photosynthesis (Reich 2012), demographic patterns (Poorter et al.
2008), and growth rates (Poorter et al. 2008), implying a possible
link to biomass accumulation. Other studies suggest that some of
these traits vary across succession (Lebrija-Trejos et al. 2010,
Lohbeck et al. 2012) or environmental gradients such as soil nutri-
ents (Ostertag 2010). Our large dataset enabled us to test the fol-
lowing hypotheses: (i) that the large gradients in edaphic variation
among sites contributed to the distribution of plant traits, espe-
cially for traits related to biogeochemical cycling (e.g., we pre-
dicted that community-weighted mean foliar nutrients would be
positively correlated to soil nutrients), (ii) within forest patches
that had similar edaphic templates but differed in age, traits that
are related to tree growth and plant water relations would change
over the course of succession, as species with higher growth rates,
higher water use efficiencies, and lower wood densities were
replaced by slower growing less drought tolerant species, and
(iii) AGB would increase as forests age, but after accounting for
stand age the residual variation across the landscape would be
explained by combinations of edaphic properties, plant func-
tional traits, and diversity (Fig. 1).

Our approach differs from many studies of succession and sec-
ondary forest regeneration that use chronosequences or “space-
for-time” substitutions (but see Dupuy et al. 2012). Most studies
select a series of plots that are presumably similar in every way
except forest age or time since disturbance, and attribute any
differences among plots to successional processes. However, in
our study landscape, previous studies show that the large gradi-
ents in edaphic factors that result from variation in parent mate-
rials and other soil forming factors have important effects on tree
species distributions and forest composition (Powers et al. 2009).
To account for both variation across successional ages and soil
variation, we selected a large number of plots distributed among
different forest ages and edaphic conditions, and used structural
equation modeling to partition variation in aboveground biomass
into the direct and indirect effects of forest age, soils, and plant
community characteristics (functional traits and diversity).

Fig. 1. Conceptual model of the direct links between soil properties
and stand age as drivers of biomass, and the indirect links mediated
by plant functional traits, taxonomic, and trait diversity. The line
between disturbance history and environment is dashed to indicate
that variables like stand age can affect some soil properties but are
unlikely to affect others.
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Methods
Site description

We conducted this study in the tropical dry forest biome located in
two national parks in the province of Guanacaste, Costa Rica: Parque
Nacional Santa Rosa in the Área de Conservación Guanacaste and
Parque Nacional Palo Verde in Área de Conservación Tempisque
(about 60 km southeast of Santa Rosa). Santa Rosa has a 30 year mean
annual precipitation of 1765 mm (www.investigadoresACG.org), and
Palo Verde has a 30 year mean annual precipitation of 1444 mm
(www.ots.ac.cr). Both locations experience a five to six month dry
season with little measurable precipitation, and annual precipita-
tion totals can vary dramatically among years. The soils of Santa
Rosa have developed on an eroding plateau made up of volcanic
lava flows and ash deposits that transition into alluvial marine
terraces at the lowest elevations (Hartshorn 1983). They are dom-
inated by entisols and vertisols, and are highly variable spatially
(Leiva et al. 2009). The soils of Palo Verde developed from alluvial
areas along the floodplain and wetlands of the Tempisque River
and the eroding limestone hills (Hartshorn 1983). Both parks con-
tain patches of older forest, but are dominated by secondary for-
ests that were previously used for agriculture or pasture land.
After the parks were established in the 1970s, forest began to grow
back (though anthropogenic fires may have slowed regeneration
in some areas), and the current landscape is a heterogeneous mo-
saic of forests of different ages on different types of soils. Forests
contain both evergreen and deciduous tree species, the number
and relative abundance of which varies across successional and
soil gradients (Powers et al. 2009). In particular, less fertile soils in
Santa Rosa support more evergreen canopies that are dominated
by a species of live oak (Quercus oleoides), while the more fertile
soils of Santa Rosa and Palo Verde support more species-rich for-
ests with more deciduous canopies (Powers et al. 2009). Because
our previous work has shown that both soil characteristics and
species composition vary among these forest cover types (e.g.,
Palo Verde dry forest, Santa Rosa dry forest, and oak dominated
forest at Santa Rosa), we used forest cover type as a dummy vari-
able in the analyses described below.

Forest inventory plots
We measured biomass and sampled soils in 84 20m × 50 m

(0.1 ha) plots, stratified by both forest type and stand age. We
acknowledge that our plot size is small, however, secondary forest
patches often occur in smaller tracts than in primary forests
(Arroyo-Mora et al. 2005). The first 60 of these plots were estab-
lished on level ground in 2007. Their diversity and structure but
not biomass stocks or traits were previously described by Powers
et al. (2009). In 2010 we sampled an additional 24 plots arrayed
along different topographic positions to investigate whether bio-
mass varied systematically from ridge to slope to valleys. Topo-
graphic position was later determined to have no significant
effects on biomass and was not included in further analyses, thus
both datasets were combined. The 84 plots were distributed
among the forest types with 43 in Santa Rosa, 22 in the oak forest,
and 19 in Palo Verde (Supplementary data Fig. 1)1. Stand age esti-
mates were made using a combination of remote sensing ob-
servations for younger plots (<20 years old) and expert local
knowledge (Powers et al. 2009). Stand age represents the approx-
imate number of years between the previous land use ending and
the year our measurements were made. Plots determined to be
mature forests were assigned a stand age of 100 for our analysis
because TDF biomass accumulation tends to level off well before
that age (Becknell et al. 2012), and 100 is well above our next oldest
secondary plots (70 years). This assignment of 100 years was shown
to have relatively little effect on our results in a sensitivity analy-

sis where we assigned these plots and age of 200 or 300 years (or
excluded them) and repeated the analysis (Supplementary data
Table 1)1.

Biomass estimates
Within each plot we identified the species and measured the

diameter at breast height (DBH) of all live trees with trunks
≥10 cm diameter. When necessary, DBH was measured above but-
tresses or trunk irregularities. In 200 m2 subplots we measured
the DBH of all trees <10 cm in diameter that were >1.4 m in height,
but we did not identify the species of these saplings. For trees
≥10 cm for which we had species-specific wood density, biomass
was estimated using an allometric equation designed for second-
ary forests in Panama, which incorporated both DBH and wood
density (ln[AGB] = –1.130 + 2.267*ln[DBH] + 1.186*ln[wood density];
van Breugel et al. 2011). Average wood density for each species
came from a previous study conducted in the same area (Powers
and Tiffin 2010). For trees <10 cm DBH and for species for which
we had no wood density data, we calculated biomass using the an
equation developed in the same system that uses only DBH
(ln[AGB] = –1.863 + 2.208*ln[DBH]; van Breugel et al. 2011). Al-
though it is desirable to have site-specific allometric equations,
deriving site-specific equations for the 146 species identified in
our plots was beyond the scope of this study. Our use of the van
Breugel secondary tropical forest equations yielded lower total
biomass estimates than the mature tropical dry forest equations
present in (Chave et al. 2005), due to lower estimates for trees in
small diameter classes (results not shown). Biomass of multi-
stemmed trees was calculated separately for each stem. Biomass
for all trees in each plot was summed to yield plot biomass and
expressed as Mg·ha−1. As these secondary forests developed in
areas that had previously been grazed or cropped for decades to
centuries, coppicing is an unlikely mechanism for regeneration in
this landscape. However, leaving remnant trees for shade in pas-
tures is a typical practice, and large (potentially remnant) trees
were included in our biomass estimates.

Soil sampling and analysis
Relating forest community characteristics to edaphic variables

can be challenging because plant species can also affect soils
(Hobbie 1992). We were interested in differences in plant species
and their traits along edaphic gradients rather than possible
vegetation-caused changes in soil properties during succession,
thus we measured total element concentrations because we ex-
pected them to vary less across successional gradients than more
labile forms of these elements (Powers and Peréz-Aviles 2013). Soil
physical and chemical properties for 60 of the 84 plots were mea-
sured in 2007 and described in a previous study (Powers et al.
2009). The 24 additional plots sampled in 2010 were analyzed
using identical laboratory methods. In each plot, 10 samples were
taken from the mineral soil with a punch core sampler to a depth
of 10 cm and bulked by plot. Three separate samples were taken at
each plot using a volumetric turf sampler to measure bulk den-
sity. Soils were analyzed for elemental content after hot nitric acid
digestion at the Research Analytical Lab of the University of Min-
nesota. Here we report data for calcium (Ca), magnesium (Mg),
phosphorus (P), and zinc (Zn). Particle size distribution was mea-
sured with the hydrometer method. Last, we measured the pH of
air dried soils in distilled water at a 1:2.5 soil to solution ratio with
an Oakton pH meter. We are confident that measuring soil char-
acteristics in different years did not affect their values, as we
remeasured pH on archived soils from 2007 along with the
2010 samples and their values were nearly identical.

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2013-0331.
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Community-weighted means of traits and diversity
To evaluate the distribution of functional traits in our forest

plots we calculated community-weighted mean values for a set of
functional traits from a trait database developed by Powers and
Tiffin (2010) that included 87 common species from our study
area. For each tree species in the trait database we included wood
density, specific leaf area (SLA), foliar N, foliar P, and foliar carbon
isotope composition (!13C, an index of water use efficiency with
higher values corresponding to higher water use efficiency).
Community-weighted mean (CWM) values for each trait were cal-
culated with the FD package for R (Lavorel et al. 2008). We first
calculated the basal area of each tree and then used each species’
relative basal area per plot as a measure of proportional abun-
dance in the CWM calculations. Of the 3959 individual trees
≥10 cm DBH, 91% were of species represented in the traits data-
base. The percentage of a plot’s basal area made up of species not
in our trait database ranged from 0% to 50% with an average of
5.9%. In only four plots was this percentage higher than 25%, and
in 64 of our 84 plots it was less than 10% (Supplementary data
Table 4)1. Trees belonging to species that did not occur in our trait
database were omitted from the CWM calculations, and the re-
maining trees were rescaled to represent the total basal area for
each plot.

In addition, we also considered whether trait diversity contrib-
uted to variation in biomass stocks via niche complementarity by
calculating functional richness as a measure of trait space that is
filled by a particular community (Villéger et al. 2008; calculated in
R using the FD package). Functional richness was chosen above
other functional diversity indices as it better represents the range
of traits that exists in a community rather than the trait’s propor-
tional abundance. Functional richness was calculated as the con-
vex hull volume made up of the trait ranges of the species present
in each plot (Villéger et al. 2008). We included the SLA, wood
density, and foliar N, P, and !13C in the functional richness calcu-
lation. Last, we calculated the Shannon diversity index as a mea-
sure of species diversity as many papers show relationships
between this and ecosystem function (Tilman 1997). As species

richness was well correlated to the number of stems per plot (r =
0.48, P < 0.0001), we preferred the Shannon index as a metric of
diversity to raw species counts.

Statistical analysis and structural equation modeling
We performed three sets of statistical analyses. First, we calcu-

lated pair-wise Spearman rank correlation coefficients on the soil
variables to investigate how these quantitative properties varied
among the plots. As all soil variables were well correlated to soil
pH, we used pH to represent soil variation in subsequent analyses.
Second, we performed standard least-squares regression analyses
on AGB, measures of diversity, and CWMs of traits with stand age
and soil pH as explanatory variables to investigate the pairwise
relationships among these factors. These analyses were conducted
using R (R Development Core Team 2012).

Last, we used structural equation modeling (SEM) to assess the
direct influence of stand age and soil pH on diversity and plant
functional traits and to assess the relative direct and indirect in-
fluence of all of these factors on AGB (Fig. 1). SEM allows for
analysis of multiple direct and indirect relationships among vari-
ables, where some variables are both explanatory and response
variables, and has been shown to more effectively deal with such
problems compared to using multiple univariate analyses (Grace
and Bollen 2005). Using maximum likelihood estimation, param-
eter values defining the relationships between variables were
found that best produce a covariance matrix that is as close as
possible to the observed covariance matrix (Grace 2006). We used
the natural log of stand age to account for nonlinear relation-
ships.

We started with two initial models, a diversity model and a trait
model. The trait model used the CWMs of wood density and four
leaf traits: specific leaf area, foliar N, foliar P, and foliar !13C
(Fig. 2a). The diversity model used functional richness and Shan-
non diversity as measures of relative influence of the range of
functional traits or the number of species in each plot (Fig. 2b).
Both models used stand age and soil pH as the primary explana-
tory variable, with forest type identifying dummy variables for

Fig. 2. The results of two structural equation models. (a) Represents the trait model, where community characteristics are represented by the
CWMs of functional traits. (b) Represents the diversity model, where Shannon diversity and functional richness represent community
characteristics. Arrows indicate significant connections in the final, best-fit model. Numbers on lines indicate the standardized coefficients of
each model relationship, which represent the relative magnitude of each relationship (non-standardized coefficients are reported in
Supplementary data Table 1). Covariance arrows are not shown but listed in the methods. R2 values in boxes represent the amount of variance
in dependent variables explained by the model. Model fit statistics for the trait model were "2 = 12.159, p-value = 0.515, RMSEA < 0.001. Fit
statistics for the diversity model were "2 = 7.108, p-value = 0.418, RMSEA = 0.014.
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Palo Verde and Oak areas around Santa Rosa. Dummy variables
were given the value 1 if the plot belonged to that group (Palo
Verde or Oak) and zero if they did not belong to that group.

For each of these models we began with an initial full model
that included all theoretical casual connections between the in-
cluded variables. Covariance arrows were added to correlated vari-
ables without hypothesized causal relationships. The CWMs of
functional traits were connected with covariance arrows, as were
Shannon diversity with functional richness, and forest type vari-
ables with soil pH. We also added covariance connections be-
tween stand age and soil, because while we assume stand age has
little effect on soil pH over the regeneration time considered in
this study, we were unable to locate many older plots in oak forest
areas with low soil pH that created a correlation between soil pH
and stand age. To find the best-fit model, we iteratively removed
non-significant connections between variables, starting with the
connection with the highest p-value, until no non-significant con-
nections remained. We assessed the overall model fit using the
overall p-value, "2value, and the root mean square error of approx-
imation (RMSEA). We added each connection back into the model
and checked to see if model fit was improved, however neither
model fit was improved with the inclusion of non-significant con-
nections. The SEM analyses were conducted using IBM SPSS Amos
version 21 (Arbuckle 2010).

Results
Soil variation

As documented previously, edaphic characteristics varied
widely across the landscape (Powers et al. 2009). Soil pH ranged by
almost two units from 5.04–6.74, and total cations, Zn, and P also
varied by 1 to 2 orders of magnitudes (Table 1), suggesting that the
large among-plot variation is related to parent material and soil
forming factors but not forest dynamics. Most soil variables were
strongly correlated in ways that are consistent with our under-
standing of soil chemistry (e.g., soil pH was positively correlated
with total concentrations of Ca and Mg, which were correlated
with clay percentage, etc.). These strong correlations suggest that
the soil variables are largely redundant; therefore in subsequent
analyses we used only soil pH, which has the advantage of being
easy to interpret. Last, some of the edaphic variables were signif-
icantly correlated with stand age. In particular, pH was positively
correlated to stand age (# = 0.43, P < 0.0001) and bulk density was
negatively correlated (# = –0.41, P < 0.0001), but other variables
like silt percentage were not correlated with stand age (# = –0.07,
P = 0.53).

Direct relationships among soils, stand age, biomass,
diversity, and traits

Regression analyses were used to investigate the pairwise rela-
tionships between the explanatory variables of stand age and soil
pH, and the response variables of AGB, diversity, and CWMs of
plant functional traits (Figs. 3 and 4). As expected, the regression
analyses were broadly consistent with the direction of associa-
tions between stand age, pH, and the response variables that are

depicted as direct relationships in structural equation models in
Fig. 2. For clarity, each response variable is plotted against stand
age or soil pH, along with regression results in Fig. 3 and 4, but we
report the results of the two analyses, i.e., regressions and direct
effects from SEMs, here together.

The pattern of AGB accumulation appeared to be a rapid in-
crease in the first 20 years followed by a slower increase in bio-
mass between stand ages of 20 and 100 (Fig. 3). AGB in plots of 50
or greater years of recovery ranged from 101 to 409 Mg·ha−1 with a
mean of 200 Mg·ha−1. For any given stand age there was a rela-
tively large range of variation in biomass. Stand age explained 46%
of the variation in biomass (Fig. 3a). Soil pH explained 14% of the
AGB variation (Fig. 3e) but was not significant when both factors
were included in multiple regression (not shown).

For all traits, there was evidence that either or both soil pH and
stand age explained variation across the landscape (Figs. 2–4), but
the weakest relationships were for CWM-wood density. Our two
metrics of diversity, the Shannon index (representing taxonomic
diversity) and functional richness (which incorporates trait val-
ues), both increased significantly with forest age (Figs. 2b and 3)
but were poorly related to soil pH. Similarly, CWM-SLA nearly
doubled over the stand age gradient, but was poorly related to soil
pH (Figs. 2a, 4a, and 4e). By contrast, traits more related to biogeo-
chemical functioning were better explained by soil pH than stand
age (Figs. 2 and 4), with the community weighed mean values of
both foliar N and P increasing with soil pH and R2 values of 0.26
to 049, respectively. CWM-foliar !13 C ranged from –30.77‰ to
–28.27‰ among plots, and values decreased consistently with pH
and less so with stand age, suggesting increased water use effi-
ciency by vegetation on less fertile soils. Last, the CWM of wood
density varied widely among plots from 0.48 to 0.80 g·cm−3, but
was not significantly related to stand age and only weakly related
to pH, contrary to our expectations (Figs. 2, 3d, and 3h). The only
variable explaining any variation in wood density in the SEM
model was the oak forest type dummy variable. The oak forest
type variable had significant effects on all CWM traits, while the
Palo Verde dummy variable only affected CWM-SLA (Fig. 2).

Structural equation modeling and direct and indirect
effects on biomass

We used SEM to link the variation in aboveground biomass
directly to stand age and soil pH and indirectly through the vari-
ation in diversity and traits (Fig. 2). To achieve the best-fit models
for both the trait model and the diversity model, connections
between non-significant parameters were removed. The best-fit
diversity model had the connections between AGB and Shannon
diversity, functional richness, and soil pH removed, thus, stand
age was the only predictor of AGB. The best-fit trait model had the
connections between AGB and both CWMs of foliar P and foliar
!13C removed. The final models for both the trait and diversity
models yielded similar measures of fit with the trait model
fitting slightly better ("2 = 12.159 and 7.108, p-value = 0.515 and
0.418, PMSEA < 0.001 and = 0.014 respectively). The trait model
explained 58% of the variation in AGB, while the diversity model

Table 1. Spearman rank correlation coefficients of soil variables (0–10 cm) collected in 84 0.1 ha plots of regenerating tropical dry forest in Costa
Rica.

Variable Range of values BD Clay (%) Silt (%) Total P Total Ca Total Mg Total Zn

pH 5.04–6.74 −0.39 (0.0002) 0.26 (0.02) −0.41 (<.0001) 0.79 (<.0001) 0.84 (<.0001) 0.84 (<.0001) 0.58 (<.0001)
BD (g cm−3) 0.58–1.20 — 0.15 (0.17) 0.10 (0.37) −0.22 (0.05) −0.26 (0.01) −0.28 (0.01) −0.24 (0.03)
Clay (%) 16.4–45.5 — −0.37 (0.0005) 0.25 (0.02) 0.38 (0.0003) 0.43 (<.0001) 0.26 (0.02)
Silt (%) 17.3–47.8 — −0.59 (<.0001) −0.61 (<.0001) −0.48 (<.0001) −0.02 (0.80)
Total P (ppm) 30.3–1272 — 0.90 (<.0001) 0.77 (<.0001) 0.49 (<.0001
Total Ca (ppm) 1553–29 367 — 0.84 (<.0001) 0.46 (<.0001)
Total Mg (pmm) 772–18 196 — 0.63 (<.0001)
Total Zn (ppm) 18.0–104.2

Note: P-values are in parentheses.
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explained 47%. In the diversity model, 50% and 48% of the varia-
tion in Shannon diversity and functional richness, respectively,
were explained by stand age and soil pH, and forest type. In the
trait model, 60% of the variation in foliar P was explained by stand
age, soil pH, and oak forest type. Of the other traits 51%, 46%, and
33% of the variation in SLA, foliar N, and foliar !13C were explained
by the model, respectively. Only 6% of the variation in wood den-
sity was explained, and the oak forest type was the only important
factor. Site variables for oak and Palo Verde forests explained
some variation in traits and measures of diversity but did not
explain variation in AGB. Figure 2 shows the standardized model
coefficients along the arrows that connect variables and the
R2 values for response variables under their names. Standardized
coefficients can be interpreted as the change in standard devia-
tions in the response variable that would correspond to a change
in one standard deviation in the explanatory variable. Signifi-
cance and non-standardized coefficients are listed in Supplemen-
tary data Table 1.1

Discussion
Tropical landscapes are increasingly dominated by mosaics of

forest in various stages of regeneration, and it is important to

understand how ecosystem properties like AGB vary across such
mosaics (Becknell et al. 2012). Our goals in this study were to
examine patterns of change across succession in AGB, traits, and
diversity, and to quantify the direct and indirect influence of
stand age and soils on AGB, traits, and diversity. We found that
stand age or soil pH was correlated with the distributions of plant
functional traits and diversity, but that few of these variables were
affected by both drivers (Fig. 2). We also found substantial varia-
tion in biomass stocks across the landscape, such that for a given
stand age different areas in the landscape support a wide range of
biomass levels (Fig. 3a). Despite strong evidence that the distribu-
tions of plant functional traits and diversity are driven by edaphic
variation and (or) successional state, these community factors ex-
plained relatively little variation in AGB after accounting for
stand age; stand age alone explained 46% of the variation in AGB
(Fig. 3a), the SEM model that included traits explained 58% of
variation in AGB, and the SEM model that included diversity ex-
plained 47% of variation in AGB. In the trait model, CWMs of SLA,
foliar N, and wood density explained additional variation in AGB,
while neither diversity metric affected biomass in the diversity
model. These results show some support for the hypothesis
that a trait model performs better at explaining biomass than

Fig. 3. AGB, Shannon diversity, functional richness, and CWM values of wood density plotted as a function of stand age (a–d) and soil pH (e–h)
in 84 plots of regenerating tropical dry forest in Costa Rica. Results of linear regression shown with line for significant relationships with the
natural log of stand age or soil pH. P-values and R2-values are shown if p-values are less than 0.05. Squares represent oak forest plots, circles
represent Santa Rosa plots, and triangles represent Palo Verde plots.
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the diversity model, which explained only 1% more variation in
AGB than did stand age (Fig. 2b).

Aboveground biomass
AGB ranged widely across our study sites in regenerating trop-

ical dry forest, from 1.6 to 409 Mg·ha−1, and plots of similar ages
often had different AGB levels (Fig. 4). This range is comparable to
global values of TDF (Becknell et al. 2012), but the four highest
biomass plots were above 300 Mg·ha−1, which is more typical of
wetter forest (Keith et al. 2009). The pattern of biomass appears to
saturate around 200–250 Mg·ha−1, which is typical for forest on
the wetter end of the TDF precipitation spectrum (Becknell et al.
2012).

In our trait model, soil pH and stand age both affected AGB
directly and indirectly, but the direct effects of stand age were
much stronger than that of soil pH or the indirect effects of either
factor. Soil pH, which is well correlated with both soil nutrients
and texture (Table 1), had relatively little explanatory power over
AGB (none in the diversity model; Fig. 2). Similarly, studies of
forest structure and biomass across successional gradients in sea-
sonal forests of the Yucatan found that stand age explained much
of the variation in biomass and basal area, and that landscape
structure and soil properties explained much less variation rela-

tive to stand age (Dupuy et al. 2012). While Clark and Clark (2000)
found that in mature rain forests, soil and topography affected
forest structural characteristics like stem density but not biomass,
other studies in tropical forests have found positive relationships
between soil fertility and biomass (Gourlet-Fleury et al. 2011).
These contrasting results may represent site-specific differences
in which combinations of abiotic and biotic factors control bio-
mass. Clearly, in our study that explicitly focused on recovering
forest, successional processes subsume any edaphic-driven effects
on biomass. By contrast, in old growth forests where secondary
succession is not present, it is possible that traits, topography,
edaphic variables, or other factors may become important in de-
termining landscape-scale patterns of AGB.

It is commonly assumed that ecosystem processes are in part
controlled by either the number of species present at a site (the
diversity-ecosystem function hypothesis) or the traits of the most
abundant species (the mass-ratio hypothesis) (Mokany et al. 2008).
Collectively, our SEM analyses provided marginal support for our
hypothesis that plant functional traits or diversity would explain
residual variation in AGB after accounting for effects of stand age
and soils; however, the trait model explained more additional
variation in AGB than did the diversity. This suggests that these

Fig. 4. CWM values of specific leaf area, foliar nitrogen, foliar phosphorus, and foliar !13C plotted as a function of stand age (a–d) and
soil pH (e–h) in 84 plots of regenerating tropical dry forest in Costa Rica. Results of linear regression shown with line for significant
relationships with the natural log of stand age or soil pH. P-values and R2-values are shown if p-values are less than 0.05. Squares represent
oak forest plots, circles represent Santa Rosa plots, and triangles represent Palo Verde plots.
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traits may have some, though perhaps a small amount of, explan-
atory power over AGB, or that their explanatory power is masked
by random variation across our study area and our small plot size.
It is also possible that traits other than those used in our study
have greater explanatory power. The fact that the final diversity
model has no connections between either measure of diversity
and AGB suggests that if diversity has any direct effect on biomass,
it is masked by the effects of stand age.

Our results show that stand age primarily drives AGB variation,
and that there is a small additional contribution from traits and
edaphic properties, which collectively explain 58% of the varia-
tion in AGB in the study landscape. What explains the remaining
variation in biomass among across the landscape? One possibility
is that both this unexplained variation and some of the exception-
ally high biomass values we recorded can be attributed to the
small plot size (0.1 ha) we used. In our fragmented landscape,
regenerating forest patches are often small (Arroyo-Mora et al.
2005), and we faced the tradeoffs between plot size and number.
There are other biological explanations as well. It is possible that
other edaphic or physiological variables that we did not measure,
previous land use, unknown recent disturbances, and (or) other
forces that affect stand dynamics (such as past dispersal limita-
tion, herbivory, disease, or changing climate patterns) also ac-
count for the unexplained variation. Much of our study area was
once grazed and may contain remnant shade trees or living fences
that impact biomass through their effects on tree recruitment,
species composition (wind versus animal dispersed species), and re-
source availability (Castillo-Núñez et al 2011). Because we could not
unambiguously identify remnant trees, they were included in our
biomass estimates; it is possible that their presence diminished our
ability to attribute variation in biomass across the landscape to
particular causes. Forest dynamics are another potentially impor-
tant source of variation in secondary forests, where there is rapid
species turnover during succession. We omitted standing dead
and fallen coarse woody debris that increase with stand age in
these forests (Kissing and Powers 2010). While all of these factors
are likely important to some degree, the use of larger plots would
likely decrease this variation more than any other factor (Chave
et al. 2004).

Community-wide functional traits and diversity
CWM values of plant functional traits and the indices of taxo-

nomic diversity (Shannon diversity) and functional richness var-
ied with both stand age and soil properties (Fig. 2). However, each
of these variables was clearly associated with one dominant con-
trol, either soil pH or stand age, with the exception of wood den-
sity, which was associated with neither. As our measures of
functional traits do not include intra-specific variation, the only
mechanism that affects CWM values of traits or functional rich-
ness in our dataset is via differences in tree species identities or
abundances among plots.

As expected, both the Shannon diversity index and functional
richness increased as forests aged. What is more surprising is the
increase in the CWM value of SLA with stand age (Fig. 4a). There have
been three other studies of variation in SLA across secondary dry
forest chronosequences in Mexico, and two found a negative rela-
tionship with stand age (Lebrija-Trejos et al. 2010; Lohbeck et al.
2012), while one study found a positive relationship (Alvarez-Anorve
et al. 2012). Forest type was also important for SLA, which was the
only trait that varied among all of the forest types. These effects
are likely attributable to the low SLA values of Quercus oleoides, the
dominant trees in the oak forest. Oak forests stand out as distinct
with respect to other trait means, including wood density. By
contrast, there was no indication that trait means differed system-
atically between the two National Parks (Palo Verde and Santa
Rosa). However, our ability to attribute directional change in
CWM-SLA to successional gradients versus soil variation is con-
founded by the fact that the oak stands tend to have poor soils and

thus lower soil fertility (and pH), and older oak forests are rare due
to land-use history.

Our SEM trait model explained a large amount of variation
(60%) in CWM foliar P, and this was largely due to soil pH (Fig. 4g)
and differences between oak forests and other forest types. The
correlation between foliar P and soil pH (which was highly corre-
lated with soil nutrients) has at least two possible explanations;
that tree species with higher requirements for P are limited to
areas with higher nutrient availability, or that soil nutrient con-
centrations are influenced by the composition of tree species at a
site. While we cannot rule out either explanation (and both may
be true to some extent), our results support the former because we
measured total quantities of soil nutrients assuming that these
are a better reflection of parent material and weathering-induced
differences among sites (at least for rock derived nutrients). This
evidence combined with other studies (Powers et al. 2009; Gourlet-
Fleury et al. 2011; Fayolle et al. 2012; Baldeck et al. 2012) suggests
that soil gradients may explain trait distributions and potentially
aid regional scale predictions of ecosystem function.

Last, wood density deserves special mention, as the CWM of this
trait varied by a factor of two across the landscape, but was not
associated with either stand age or soils (Figs. 2a, 3d, and 3h). The
common paradigm of pioneer species being replaced by shade-
tolerant species over succession yields the prediction that fast
growing species with low wood density and high nutrient con-
tents should be more abundant in young forests and decrease in
abundance as forests age (Bazzaz and Pickett 1980). By contrast,
the highest CWM wood density values in our data set were among
our youngest plots. This may reflect the fact that in TDF, water
resources change as forests age and become cooler, moister envi-
ronments (Lebrija-Trejos et al. 2011), and high wood density may
indicate greater cavitation resistance and drought tolerance. Al-
ternatively, in forests recovering from conversion to pasture,
community level wood density may be influenced by the higher
wood densities found in some grazing and fire resistant species or
early successional legume species that have high wood densities
(Powers and Tiffin 2010). For example, in our study area many
young forests are dominated by species like Rehdera trinervis and
the legume Gliricidia sepium, which have high wood densities of
0.74 and 0.78 g·cm−3, respectively (Powers et al. 2009; Powers and
Tiffin 2010). By contrast, Lohbeck et al. (2013) found a negative
relationship between wood density and stand age in Mexico. Col-
lectively, our study along with other studies of traits across suc-
cession in TDF (Alvarez-Anorve et al. 2012; Lohbeck et al. 2013)
suggest that patterns in succession may be more complicated than
simple resource-availability driven hypotheses suggest (Bazzaz and
Pickett 1980).

Conclusions
Our results paint a complex picture of the variation of both AGB

and traits across the secondary tropical dry forest landscape of
Costa Rica. We used small plots in a heterogeneous secondary
forest landscape and were able to explain 58% of the variation in
biomass and up to 60% of the variation in community-level plant
traits. These results show marginal support for the hypotheses
that traits can be used to explain biomass. However, the contrast-
ing patterns among studies in both AGB and trait variation under-
score the need for site-specific understanding of relationships
among abiotic and biotic variables across the landscape, and re-
gional or continental syntheses of these patterns. Our results in-
dicate that the processes and factors underlying the distribution
of AGB of secondary TDF in Costa Rica are complex and make
scaling and regional predictions difficult. However our results
also demonstrate the large carbon storage potential of secondary
tropical dry forest of this region. Our study shows that, if properly
incentivized, this region could continue to restore large areas of
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current pastureland to forest and act as a significant carbon sink
for decades into the future.
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