
Editorial

Hydraulics in the 21st century

Introduction

The science of plant hydraulics has long sought to understand the
fundamental mechanisms of how water moves through plant
vascular systems (Dixon & Joly, 1895). Over the last 50 years,
advances in our understanding of embolism formation (Tyree &
Sperry, 1989), hydraulic segmentation (Zimmermann, 1978), and
refilling (Sperry et al., 1987) were generated both through novel
measurements (Scholander et al., 1965; Sperry et al., 1988; Alder
et al. 1997) andmodel development (Tyree&Sperry, 1989; Sperry
et al., 1998). This knowledge provided a foundation ofmechanistic
understanding that has impacted fields of study from crop
physiology to the global hydrologic cycle (Fig. 1; Sperry et al.,
2003; Tang et al., 2015; Peters-Lidard et al., 2019). Scientific
advances in our understanding of plant hydraulics and its impli-
cations for plant functionhave arguably accelerated over the last two
decades. New empirical (Holbrook et al., 2001; Choat et al., 2015)
and modeling (Christoffersen et al., 2016; Sperry et al., 2016;
Venturas et al., 2018; Kennedy et al., 2019; Mencuccini et al.,
2019) approaches have been applied to tackle some of our largest
challenges, and different perspectives have been integrated to better
understand the entire vascular system (e.g. carbon metabolism and
xylem hydraulics; H€oltt€a et al., 2009; Secchi et al., 2011).

Here we highlight some of the most exciting recent advances in
our understanding of plant hydraulics, and address some of the new
frontiers that have emerged. These advances and frontiers all have
implications far beyond the study of how water moves through
plants, as highlighted graphically in Fig. 1. We conclude with
speculation on where plant hydraulics science will progress in the
21st century.

Advance: understanding the evolution and ecology of
hydraulics

An exciting aspect of plant hydraulics has been the discovery that
adaptation in the form and function of the water transport system
constitutes a fundamental axis in terrestrial plant evolution. This
situation arises because of three unavoidable consequences of
undertaking photosynthesis and growth on the land. First is the
inevitable connection between transpiration and photosynthesis
caused by the parallel fluxes of water and CO2 through stomata;
second is the relatively narrow functional hydration window
required for photosynthetic, stomatal and xylem operation; third is
the cost associated with vascular construction and maintenance.
Assuming that selection drives towards maximizing net

photosynthetic profit (Givnish, 1987) then it is expected that
plants should invest just enough hydraulic capacity to maintain
stomata open for maximum photosynthesis under favorable soil
and atmospheric conditions (Dewar et al., 2018). This argument
has found strong support in the literature in the form of clear
correlations between the efficiency of xylem water supply and both
the photosynthetic capacity (Hubbard et al., 2001; Brodribb et al.,
2005;Maherali et al., 2008) and productivity (Poorter et al., 2010)
of plant species. Coordination is evidenced by covariation of
hydraulic and stomatal anatomy to achieve a balance betweenwater
supply and photosynthesis (Sack et al., 2005; Brodribb & Jordan,
2011; Fiorin et al., 2016; Schneider et al., 2017). Key patterns have
emerged linking water transport properties such as leaf vein density
with stomatal density through cell size (Carins Murphy et al.,
2012), enabling plasticity but also determining adaptive trajecto-
ries into different light climates (Brodribb et al., 2013). Recent
work shows how these different structural, hydraulic and water
relations traits adapt across different scales from the individual up
to the level of plant family (Rosas et al., 2019). The stability of some
hydraulic traits within species and even larger phylogenetic
groupings has allowed a degree of historical reconstruction of
hydraulics within major clades, revealing connections between
adaptive improvement in hydraulic efficiency of leaves and the rise
of the angiosperms to global dominance (Feild&Brodribb, 2013).

Modelers have realized the potential of plant hydraulics as a
means of better representing the behavior of vegetation in
regulating global fluxes of carbon and water vapor. The incorpo-
ration of hydraulic frameworks into land surface models allow
variables such as rooting depth, plant allometry and capacitance to
produce a more meaningful representation of plant functional
types in large scale modeling (Xu et al., 2016). In addition, the
application of hydraulic optimization models formulated on
principles of minimizing costs associated with hydraulic dysfunc-
tion during water deficit, provide much needed improvements to
predictions of vegetation response to rainfall (Sperry et al., 2016;
Wolf et al., 2016; Venturas et al., 2018). Ecologists have also
embraced the plant hydraulic system as a new tool to connect
ecological patterns with functional properties of plants (Choat
et al., 2007; Markesteijn et al., 2011). This has allowed the
traditional ‘functional trait’ network to be expanded from basic
economics (e.g. leaf mass per area) to include hydraulics traits that
have a more direct mechanistic association with plant function and
climate (Choat et al., 2007; Larter et al., 2017). This approach is
enabling researchers to address more complex ecological questions
about community assembly (Xu et al., 2016) and species distribu-
tions (Blackman et al., 2012).

Plant hydraulics is still a relatively new science, and its
application to understand a diversity of ecological and global scale
processes remains constrained by basic knowledge about the
function of the hydraulic system as a whole. The foundational
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knowledge about plant hydraulics was built from studies of
hydraulic processes in stems, but these are the simplest and least
important resistors in the whole plant vascular system.Now there is
an urgent need to expand our understanding of the major resistors
in plants; the roots, leaves and flowers. New tools and methods are
providing insights into the performance of these complex organs,
but progress remains slow, with roots and flowers particularly
underrepresented in the literature. Only armed with a detailed
knowledge of whole plant hydraulic function will we be able to
confidently interpret and predict the responses of whole plants to
atmospheric and soil conditions.

Advance: understanding and simulation of hydraulic
failure and mortality

Hydraulics play a critical role in the survival andmortality of plants
experiencing drought, be it through direct failure to avoid
desiccation (Brodribb & Cochard, 2009; Blackman et al., 2016),
and/or through stomatal reductions inphotosynthesis that promote

carbon starvation and vulnerability to pests (Mart�ınez-Vilalta et al.,
2002). Building on the hydraulic framework for mortality predic-
tion (McDowell et al., 2008) it has emerged that plantswhich spend
long durations (e.g. months) with low residual xylem hydraulic
conductivity tend to die (McDowell et al., 2013; Anderegg et al.,
2015; Sperry&Love, 2015; Adams et al., 2017). The critical loss of
conductance (commonly referred to as percentage loss of conduc-
tance, PLC) leading to hydraulic failure has been reported to be
variable among species, sites and experiments. This is not
unexpected, as the relevant parameter to be considered is not PLC
per se, but the actual hydraulic conductance and its sufficiency to
maintain cells hydrated above a critical water content, under a given
evaporative demand and residual leaf conductance to water vapor.
Models can now simulate hydraulic failure with relatively high
accuracy throughout the entire plant vasculature (McDowell et al.,
2013; Sperry et al., 2016), with rigorous hydraulics now entering
into ecosystem and global scale models of Earth system processes
(Christoffersen et al., 2016; Kennedy et al., 2019). The identifica-
tion of thresholds of critical residual hydraulic conductance under
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Fig. 1 Plant hydraulics has influenced a broad suite of scientific fields. Plant hydraulics originates from the study of water transport through the xylem, but is
now extended to consider soil–root, leaf, and whole-plant transport processes, and is even now being applied at global scales via satellite remote sensing.
Fields influenced by plant hydraulics include plant ecology and vegetation dynamics, crop and wild-land function and structure, and the global carbon and
water cycles.
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different scenarios of evaporative demand suggests models can
directly predictmortality fromhydraulic failurewhen they properly
represent plant hydraulics. Likewise, these trait-enabled hydraulics
models can simulate hydraulic safety margins (e.g. the difference
between observed minimum water potentials and the water
potential of embolism), which is a primary correlate of drought-
induced mortality (Anderegg et al., 2016).

The challenges facing our understanding of the role of
hydraulics in drought-induced mortality remain numerous. First,
mortality is likely a product of a cascade of influences and
mechanisms (e.g. Manion, 1981; Waring, 1987) and is unlikely
to be a case of hydraulic failure in twigs in isolation, thus the
assumption that hydraulics is all we must know to predict
mortality seems premature and overly simplistic. Research
considering the myriad of processes that can promote mortality
is the most likely to yield mechanistic insight from which
simplified modeling schemes can be developed. Second, under-
standing the degree of hydraulic failure belowground has
emerged as a critical frontier, as model analysis suggests hydraulic
failure in the roots and/or root–soil interface may dominate
during drought (McDowell et al., 2013; D. M. Johnson et al.,
2018; Mackay et al., 2019). This is a large challenge due to the
difficult nature of quantifying plant hydraulics belowground.
Third, we need to better understand hydraulic fluxes and degree
of associated embolism during periods when root water uptake
and transpiration are curtailed and cuticular conductance and
capacitance dominate the output and input fluxes of water to the
foliage (Blackman et al., 2016; Duursma et al., 2019; K€orner,
2019). It is these small fluxes that may define the critical point of
hydraulic failure during drought (Cochard, 2019), and thus
more detailed focus is merited. Finally, determining the role of
carbohydrate supply and utilization in embolism avoidance and
repair/regrowth of xylem (Vandegehuchte et al., 2015; Tomasella
et al., 2017) is essential if we are to understand and simulate
coupled carbon-hydraulic function (McDowell et al., 2013;
Fisher et al., 2018).

Advance: recovery from xylem embolism

Experimental evidence suggests that plants can survive drought
when xylem embolism remains below critical thresholds (Nardini
et al., 2013). Still, the loss inwater transport capacity caused by gas-
filled conduits reduces gas exchange and photosynthesis even after
drought relief (Kannenberg et al., 2019), possibly implying long-
term legacies on plant health and productivity. A still open question
is whether plants can recover from nonlethal levels of xylem
embolism following rehydration, by regaining full pre-drought
hydraulic functionality. While growth of new xylem provides a
mid- to long-term solution for woody plants (Brodribb et al.,
2010), it is debated if plants can refill embolized conduits with
water, or if these gas-filled conduits are functionally lost forever
despite the significant carbon costs incurred by plants in their
construction (Klein et al., 2018). Some woody and herbaceous
plants are known to seasonally repair frost-induced embolism via
generation of positive and over-atmospheric pressure in their xylem
system, either at root or stem level (Yin et al., 2018).

Do plants repair embolized conduits by generating positive
xylem pressure after drought relief? Early reports based on
hydraulic measurements of embolism dynamics under drought
and recovery suggested that some plants can refill embolized
conduits even under negative water potential (Salleo et al., 1996),
and it was proposed that an osmotic mechanism based on the
dynamics of wood and bark nonstructural carbohydrates might
provide the forces necessary to overcome water potential
gradients (Schmitz et al., 2012). This view has been challenged
by reports suggesting that destructive hydraulic techniques
overestimate xylem embolism and generate artefactual fluctua-
tions in recorded PLC levels (Jansen et al., 2015). Other studies
with micro-computed tomography (micro-CT) observations of
embolism build-up during drought roughly correlate with
hydraulic measurements of PLC (Nardini et al., 2017; Nolf
et al., 2017; Losso et al., 2019), but hydraulic evidence of
refilling is currently considered with suspicion. The occurrence
of refilling has been detected with in vivo imaging techniques in
some cases (Kaufmann et al., 2009; Brodersen et al., 2018) but
not in others (Choat et al., 2015). However, it has been argued
that very local damage by X-rays in the imaging region of a stem
(< 5 mm) during repeated micro-CT scans can damage
parenchyma cells in some species (Petruzzellis et al., 2018),
possibly hindering the vital processes that are putatively required
to refill the entire stem (Lovisolo et al., 2008; Laur & Hacke,
2014; Secchi et al., 2017). Further work will be required to
confirm the majority view from CT work, that refilling in plants
is not possible under tension.

An open-minded analysis of available evidence suggests that
post-drought embolism refilling under substantial residual tension
is probably not common in plants, and at least problematic from a
thermodynamic point of view (Vesala et al., 2003). Rather, the
actual question is whether active and fast hydraulic recovery is
possible when plant water potential rises close to zero, via biological
processes generating local positive xylem pressures using residual
stores of non-structural carbohydrates (Savi et al., 2016; Liu et al.,
2019). Answering this question without triggering new controver-
sies will probably require at least twonewmethodological advances.
The first one is the possibility to observe in vivo and in real-time the
functional status of xylem conduits during drought and recovery,
without damaging living wood and bark cells. While micro-CT
might not be up to this task (Petruzzellis et al., 2018), the optical
method applied to leaf vasculature (Brodribb et al., 2016) is a very
promising and nondestructive approach, but until now it has only
been seldom used to observe eventual xylem refilling (K. M.
Johnson et al., 2018). The second methodological advancement is
related to the accurate measurement of water potential in the
proximity and within the eventually refilling conduits. Previous
studies aimed at detecting xylem refilling have measured water
potential using bagged leaves to equilibrate leaf and stem water
potential, or via psychrometric sensors attached to stems/leaves. In
both cases, it is possible that measured water potential does not
reflect the local conditions around the conduits, due to poor
resolution or substantial water potential disequilibria within the
plant during the rehydration phase. This might lead to incorrect
conclusions on the occurrence of embolism repair under tension, or
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on the lack of refilling even when bulk water potential rises close to
zero. Clearly, there is a need formore accuratemeasures of thewater
potential of living cells and water-filled conduits surrounding
embolized conduits, aswell as the osmotic potential of the sap in the
eventually refilling conduit. This would allow us to conclude that:
thermodynamic conditions make possible passive embolism
reversal and biologically active processes allow refilling to overcome
residual water potential gradients. While current technology does
not allow such a level of spatial resolution in water potential
measurements, it is possible that nanotechnology will provide
means to overcome these major technical limitations (Kwak et al.,
2017).

The future of plant hydraulics science

Plant hydraulic regulation of water uptake provides the backbone
of the plant carbon cycle and ecology because of its direct control
over, and tight coordination with, canopy photosynthesis.
Advances in measurements and modeling over the last few decades
have enabled far-reaching influence of hydraulic discoveries,
including impacting how we view and simulate the global water
and carbon cycles and manage crop systems (Fig. 1). Perhaps most
importantly in this era of a warming atmosphere andmore variable
droughts, is the critical role our understanding of plant hydraulics is
having on our ability to predict andmitigate chronically-increasing
stressors (e.g. temperature, vapor pressure deficit) on plant function
and survival.

There are many challenges still in front of us. We do not know
the critical thresholds of embolism that results in complete
hydraulic failure of the vasculature, nor the role of carbohydrate
metabolism in mitigation of, and repair of, embolized conduits.
Hydraulic parameters are expected to aid in our understanding of
trait-tradeoffs, yet thus far a mechanistic linkage between many of
the spectrum of hydraulic traits is missing (Christoffersen et al.,
2016; Gleason et al., 2016). Likewise, we do not understand the
interactions of rising atmospheric [CO2], rising vapor pressure
deficit, and plant hydraulics. In the simplest terms, what will
dominate the hydraulic responses: elevated CO2, which aids water-
use efficiency, or elevated vapor pressure deficit, which increases the
risk of embolism? Without this knowledge it is difficult to predict
future photosynthesis, growth and survival.

The 21st century offers a very exciting time for advancement of
plant hydraulics understanding, approaches, and applications.
Future directions range in scale from understanding the molecular
regulation and feedbacks with maximum conductance and
embolism avoidance, to improved understanding of water poten-
tial regulation at landscape to global scales (Momen et al., 2017).
Inherently, developments in understanding will be associated with
continued methodological improvements at micro- to macro-
scales, and with applications of refined hydraulic models to allow
strong, process-based inferences. Perhaps the most important
directions that plant hydraulics science can go is in applications to
the prediction and management of both wild and crop systems
under rising temperature and vapor pressure deficit and drought
frequency, which threatens food production and the global carbon
cycle alike.
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